

ROBOT series

ROBOT series description

Fig. 20

ROBOT

The ROBOT series is particularly well-suited for heavy load applications where significant carriage pitch, yaw or roll moments are applied; or for the linear conveyance of SCARA-type and 6 axis articulated arm robots on a transfer or factory automation line. As a robust, high load choice, the ROBOT Series is the linear actuator for the most demanding applications.

Available in four sizes from 100 mm to 220 mm, the ROBOT series linear units have a rigid structure made by a heavy rectangular cross-section of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced polyurethane. The carriage is running on two parallel linear guides with four self-lubricated "maintenance-free" caged ball bearing blocks, positioned to support the carriage and all incident loads and moments.

A polyurethane sealing strip ensures complete protection of the driving belt against dirt, chips, liquids and other contaminants.

The ROBOT series is the clear choice for heavy, high-speed, fluctuating load and moment applications in aggressive environments where repeatable, maintenance-free industrial automation is required.

Corrosion resistant version

ROBOT linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

They are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel, preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of ROBOT series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The dimensional tolerances comply with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Driving belt

ROBOT series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with backlash-free pulleys, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The provision of guidance for the belt within the body causes it to run central on the pulley, there by ensuring long service life.

Carriage

The carriage of the ROBOT series linear units are made of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through it, as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

ROBOT series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminants, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

General data about aluminum used: AL 6060

Chemical composition [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15

Tab. 34

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	0 10-0	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655

Tab. 35

Mechanical characteristics

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

ROBOT ... SP with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the body.
- The carriage is assembled on four pre-loaded ball bearing blocks.
- The four ball row configuration enable the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The lubrication reservoirs (pockets) fitted on the cages considerably decreases re-lubrication frequency. Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High bending permissible moments
- Low friction
- Long duration
- Maintenance free (dependent on application)
- Low noise

ROBOT SP section

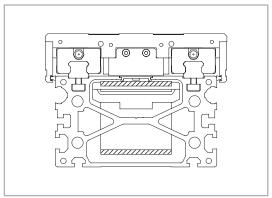
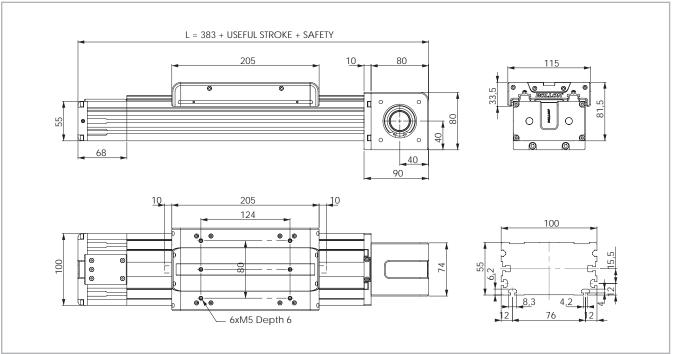


Fig. 21

The new driving head

The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on ROBOT series linear actuators. With the new head, it is possible to assembly the gearbox on either the right or the left side of the actuator by means of a standard assembly kit.


The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accommodate gearboxes from the major brands on the market. For more information see pag. PLS-30.

The same logic is valid when mounting the shaft to connect two units in parallel.

ROBOT 100 SP

ROBOT 100 SP dimensions

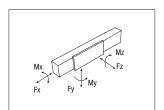
The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 22

Technical data

	Туре
	R0B0T 100 SP
Max. useful stroke length [mm]	6100
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2.4
Zero travel weight [kg]	4.5
Weight for 100 mm useful stroke [kg]	0.8
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g·mm²]	40004
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 37

Moments of inertia of the aluminum body


Туре	I _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0.05	0.23	0.28
			Tab. 38

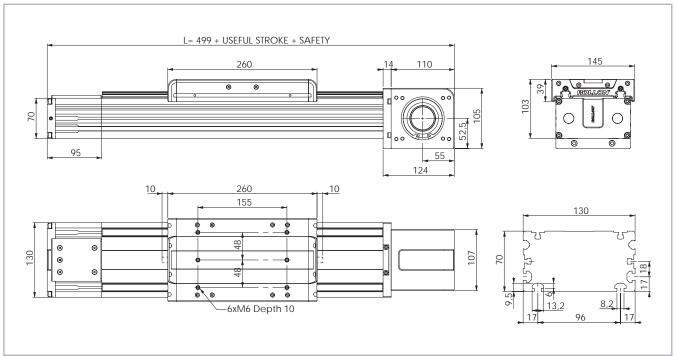
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
R0B0T 100 SP	32 AT 5	32	0.105

Belt length (mm) = $2 \times L - 125$

ROBOT 100 SP - Load capacity


Туре	F _x [N]		F _y [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 100 SP	1176	739	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page PLS-32 and PLS-33

Tab. 40

ROBOT 130 SP

ROBOT 130 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

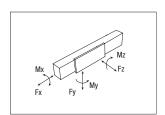
Fig. 23

Technical data

	Туре
	R0B0T 130 SP
Max. useful stroke length [mm]*1	6050
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	50 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	2.8
Zero travel weight [kg]	9.1
Weight for 100 mm useful stroke [kg]	1.2
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g·mm²]	360659
Rail size [mm]	15

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 42

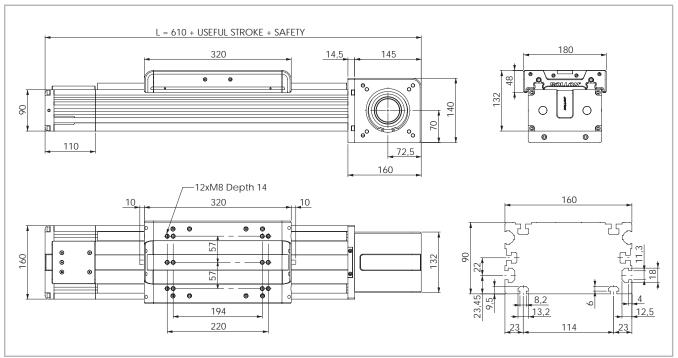
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 130 SP	50 AT 10	50	0.29
			Tab. 43

Belt length (mm) = $2 \times L - 93$

ROBOT 130 SP - Load capacity


Туре	F _x [N]		F _, [N]		F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130 SP	3112	1725	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page PLS-32 and PLS-33

Tab. 41

ROBOT 160 SP

ROBOT 160 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 24

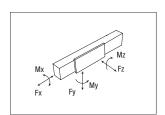
Technical data

	Туре
	R0B0T 160 SP
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	70 AT 10
Type of pulley	Z 20
Pulley pitch diameter [mm]	63.66
Carriage displacement per pulley turn [mm]	200
Carriage weight [kg]	5.3
Zero travel weight [kg]	21
Weight for 100 mm useful stroke [kg]	1.9
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g·mm²]	$1.303 \cdot 10^{6}$
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joi	ints Tab. 45

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]	
R0B0T 160	0.37	1.51	1.88	
			Tab. 46	

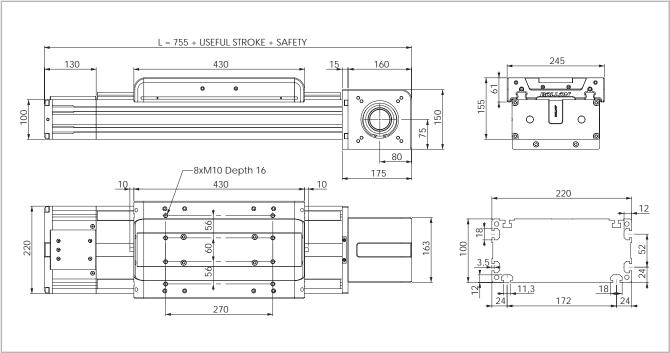

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 160 SP	70 AT 10	70	0.41

Tab. 47

Belt length (mm) = $2 \times L - 130$


ROBOT 160 SP - Load capacity

Туре	F [1	: X N]	F [N	: V M]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160 SP	5229	3024	153600	70798	153600	8755	12211	12211

See verification under static load and lifetime on page PLS-32 and PLS-33

ROBOT 220 SP

ROBOT 220 SP dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

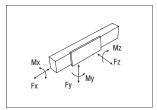
Fig. 25

Technical data

	Туре
	R0B0T 220 SP
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	100 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	14.4
Zero travel weight [kg]	41
Weight for 100 mm useful stroke [kg]	2.5
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g·mm²]	3.687 · 10 ⁶
Rail size [mm]	25
1) It is possible to obtain strokes up to 11000 mm by means of special Rollor	n joints Tab. 4

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	_x [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]	_p [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 50

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220 SP	100 AT 10	100	0.58
			Tab. 51

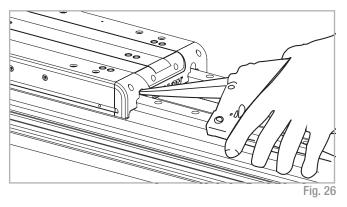
Belt length (mm) = $2 \times L - 105$

ROBOT 220 SP - Load capacity

Туре	F [l	: N]	F [i	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 SP	9545	6325	258800	116833	258800	22257	28986	28986

See verification under static load and lifetime on page PLS-32 and PLS-33

^{*2)} Positioning repeatability is dependent on the type of transmission used


Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the

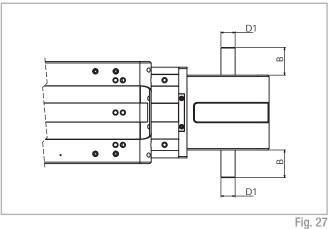
ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Insert grease gun in the specific grease nipples.

- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environemental condi-

Quantity of lubricant necessary for re-lubrication of each block:

Туре	Unit: [cm³]
ROBOT 100 SP	0.7
R0B0T 130 SP	0.7
R0B0T 160 SP	1.4
ROBOT 220 SP	2.4


Tab. 53

tions, lubrication should be carried out more frequently. Apply to Rollon for further advice.

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
ROBOT 100	AS 15	35	15h7
ROBOT 130	AS 20	40	20h7
ROBOT 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7

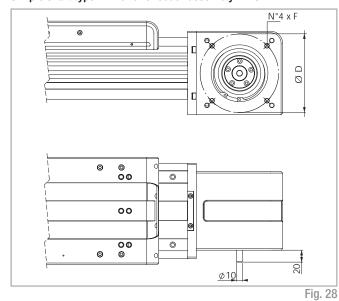
Tab. 54

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	В	D1	AS assembly kit code
R0B0T 100	AS 15	35	15H7	G002695
ROBOT 130	AS 20	40	20H7	G002696
ROBOT 160	AS 25	50	25H7	G000649
ROBOT 220	AS 25	50	25H7	G000649

Unit

ROBOT 100


ROBOT 130

ROBOT 160

ROBOT 220

Tab. 55

Simple shaft type AE 10 for encoder assembly + AS

Ti	ab. 56
Position of the simple shafts for encoder assembly to the right or	to the
left on the driving head.	

Code kit

ΑE

G002746

G002745

G002370

G002370

ØD

75

100

130

130

M8

M6

M6

M8

Hollow shafts

AC hollow shaft type

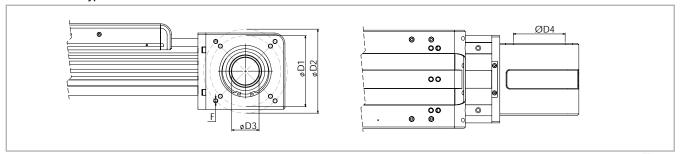


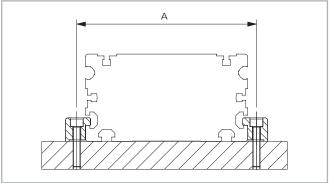
Fig. 29

Unit mm

Appliable to unit	Shaft type	D1	D2	D3	D4	F
R0B0T 100	AC26	75	-	26H7	47	M6
R0B0T 130	AC41	100	72x92	41H7	72	M6
R0B0T 160	AC50	130	154	50H7	95	M8
R0B0T 220	AC50	130	110	50H7	95	M8

Tab. 57

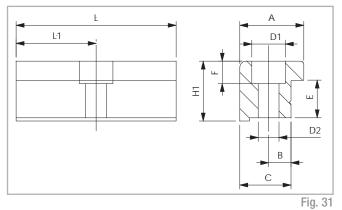
An (optional) connection flange is required to fit the standard reduction units selected by Rollon.


For further informations contact our offices

Accessories

Fixing by brackets

The linear motion systems used for the Rollon series ROBOT linear units enable support of loads in any direction. They can therefore be installed in any position.


To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 58

Fig. 30

Fixing brackets

Anodised aluminum block for fixing the linear units through the side T-slots of the body.

Fixing by T-nuts

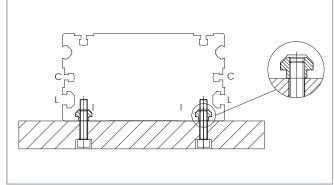
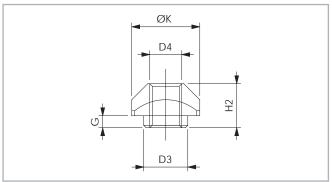


Fig. 32

Warning:


Do not fix the linear units through the drive ends.

Dimensions (mm)

Unit	А	В	С	E	F	D1	D2	H1	L	Lt	Code
R0B0T 100	20	6	16	10	5.5	9.5	5.3	14	35	17.5	1000958
R0B0T 130	20	7	16	12.7	7	10.5	6.5	18.7	50	25	1001061
R0B0T 160	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
R0B0T 220	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233

Tab. 59

T-nuts

L=Side / C=Central / I=Lower - see fig. 31

Fig. 33

Steel nuts to be used in the slots of the body.

Dimensions (mm)

Unit		D3	D4	G	H2	К	Code
R0B0T 100	L-I	-	M4	-	3.4	8	1001046
R0B0T 130	С	-	M3	-	4	6	1001097
R0B0T 130	L-I	8	M6	3.3	8.3	13	1000043
R0B0T 160	С	-	M6	-	5.8	13	1000910
R0B0T 160	I	8	M6	3.3	8.3	13	1000043
R0B0T 160	L	11	M8	2.8	10.8	17	1000932
R0B0T 220	L-I	11	M8	2.8	10.8	17	1000932

Proximity ROBOT...SP

Fig. 34

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into the body slots.

Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	B4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ROBOT 100 SP	9.5	20	25	45	12	25	Ø 8	G000268	G000092
ROBOT 130 SP	21	28	50	60	20	40	Ø 12	G000269	G000126
R0B0T 160 SP	21	28	50	64	20	40	Ø 12	G000269	G000123
ROBOT 220 SP	21	28	50	70	20	40	Ø 12	G000269	G000207
									Tab. 61

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Protections

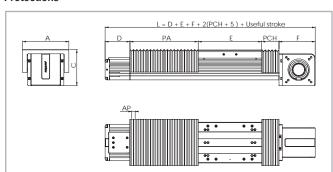


Fig. 35

Standard protections

The Rollon series ROBOT linear units are equipped with a polyurethane sealing strip to protect all parts inside the body against dust and foreign matter. The sealing strip runs the length of the body and is kept in position by micro-bearings located within the carriage. This ensures very low frictional resistance as it passes through the carriage.

Dimensions (mm)

Unit	А	С	D	E	F
R0B0T 130	174	103	95	230	135
R0B0T 160	204	131.5	110	280	160
R0B0T 220	275	149.5	130	380	160

Tab. 62

Protection of ball bearing guides

The four ball bearing blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.

Special protection

See Fig. 35.

To use these linear units in very critical environments, they can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and the ends of the body with Velcro tape for easy assembly and disassembly.

The total length (L) of the linear unit will vary:

Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Assembly kits

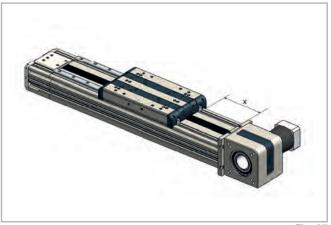
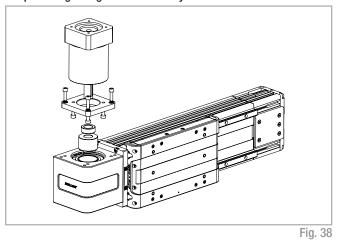


Fig. 36


Fig. 37

For the direct assembly of Robot linear units on other types of actuators Rollon offers dedicated assembly kits (brackets) in order to fix those brackets the ends of the actuator must be free of rails. The table below gives the codes of the assembly kit. The allowed combination of assembly as well as the length without rails at each end.

	Kit	Code	X No rail at each end (mm)
	ROBOT 100 - ELM 65	G000205	75
	ROBOT 100 - ROBOT 130	G000201*	155
1 -	ROBOT 100 - ECO 80	G000203	90
	ROBOT 100 - E-SMART 50	G000642	60
	ROBOT 130 - ELM 65	G000196	75
1-	ROBOT 130 - ELM 80	G000195	90
	ROBOT 130 - ROBOT 130	G000197*	155
	ROBOT 130 - ROBOT 160	G000197*	190
	ROBOT 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
	ROBOT 160 - ROBOT 220	G000202*	255
4-	ROBOT 220 - ELM 110	G000199	120 Tab. 63

 $[\]ensuremath{^{\star}}$ Additional fixing holes are requested on the robot plate

Adapter flange for gearbox assembly

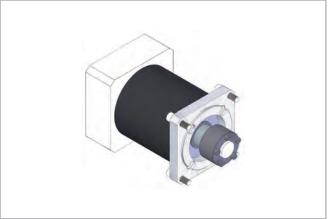
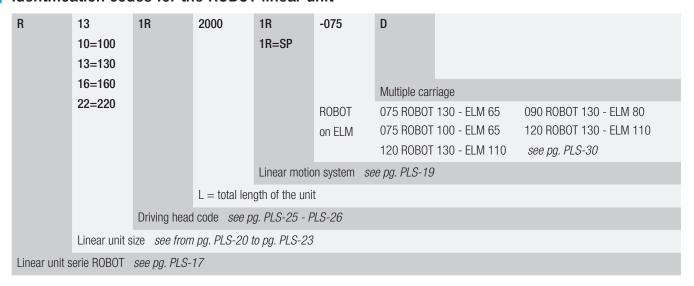


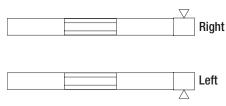
Fig. 39

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit type	Gearbox type (not included)	Kit Code		
R0B0T 100	MP060	G000566		
NUDUI 100	LC050; PE2; NP005S	G001444		
	P3	G000824		
	MP080	G000826		
	LC090; MPV01; NP025S; PE4	G000827		
R0B0T 130	MP105	G000830		
NUDUI 130	PE3; NP015S; LC070	G001078		
	SP075; PLN090	G000859		
	SP060; PLN070	G000829		
	SW040	G000866		
	AB115	G000481		
	MP130	G000482		
	LC120; MPV02; NP035S; PE5; AE120	G000483		
R0B0T 160	LC090, NP025S, PE, NP025S	G000525		
	SP+075, PLN090, P4, VRS075, AF075A	G000526		
	PSF5; NPS35; SP+100	G000657		
	MP105	G000527		
	AB115	G000481		
	MP130	G000482		
	LC120; MPV02; NP035S; PE5; AE120	G000483		
R0B0T 220	LC090, NP025S, PE4, NP025S	G000525		
	SP+075, PLN090, P4, VRS075, AF075A	G000526		
	PSF5; NPS35; SP+100	G000657		
	MP105	G000527		


Tab. 64

For other gearbox type ask Rollon


Identification codes for the ROBOT linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Left / right orientation

